近20年以来,随着科技的不断发展,焊接技术、切割材料的品种、规格及形状日趋繁多,在现代TIG(钨极惰性气体保护焊)和 PLASMA(等离子)等领域内正兴起自动焊、等离子喷焊、等离子切割和高精度焊接等一系列新技术、新工艺,对电极材料的可靠性和稳定性提出了更高的要求。同时,为了与人类社会文明发展相适应,关于钨电极材料在生产、使用过程中对环境造成的影响也有了更高、更为苛刻的要求。为此,各国材料研究人员正致力于研制各种新型钨电极材料。至今为止,在替代放射性钍钨电极方面的进展,基本都集中在稀土(铈、镧、钇及其复合稀土氧化物)钨电极材料方面。
目前,在不含放射元素钍的电极产品中,使用较多的电极是铈钨电极。自 20世纪七八十年代,我国上海灯泡厂、北京钨钼材料厂等先后投入铈钨材料的开发和生产,铈钨电极己被国际标准化组织列入非熔化极国际标准中。铈钨电极具有起弧效果佳、耐烧损、寿命长等优点。由于铈钨电极是为了取代放射性钍钨材料而发展起来的,在国内外有较广的应用市场,尤其是在小规格焊接用钨电极方面成功地取代了钍钨电极,赢得了用户的广泛好评。但在交流氢弧焊电极、大功率超高压球形氛灯的阴极材料等方面尚不能完全取代钍钨电极,仍存在焊接电流不稳定的情况。同时,铈钨电极还存在引弧性能较差、使用寿命较短等不足。
20世纪 80年代,科研人员将稀土氧化物三氧化二钇(Y2O3)直接掺杂到氧化钨里,经过还原、烧结及加工制备成各种规格的钇钨电极。钇钨电极在工作状态下,电弧弧束细长、压缩程度大,尤其在中、大电流工作条件下熔深最大,目前主要用于军工和航空航天工业领域。通过对钇钨电极材料的引弧性能、电弧静特性、抗烧损能力以及焊接工艺试验,发现该类电极只能局限于小电流焊接,在大电流负荷下电极烧损严重,电子发射稳定性差。
20世纪 90年代以来,经研究发现添加氧化镧的钨丝比钍钨丝具有更低的使用温度及更高的电子发射能力,而比添加其他稀土氧化物的钨丝具有更长的使用寿命,镧钨电极中氧化镧的迁移速率和蒸发速率低,容易形成燕尾搭接金相组织,从而改善高温抗蠕变性能。除此之外,镧钨电极耐用电流高、烧损率最小,但其加工性能和电弧稳定性不够。目前,镧钨电极主要用于直流焊接。由于镧钨电极的电性能最接近 2%的钍钨电极,氩弧焊操作人员不需要改变焊接操作程序就可以快捷地使用这种电极替代钍钨电极而免受钍的放射性危害,这种转变在交流条件和直流条件下均可行。目前,镧钨电极在欧洲和日本成为最受欢迎的钍钨电极替代品。
锆钨电极中含少量的二氧化锆(ZrO2)。 锆钨电极的焊接特能位于纯钨电极和钍钨电极之间,是为了改善纯钨电极在高负荷焊接条件下容易自身熔化进而污染工件的弊端而研制的钨电极产品。锆钨电极在交流电流条件下表现良好,焊接时电极尖端能保持圆球状,而且电弧比纯钨电极稳定。锆钨电极最大的特点是,在高负载电流的情况下焊接时,这种电极圆球状结构能够减少渗钨现象,并具有良好的抗腐蚀能力。锆钨电极适用于镁铝及其合金的交流焊接,采用稀土氧化物作为弥散强化的第 2相加入钨基体中,可以提高钨电极的再结晶温度、降低电子逸出功、延长使用寿命、提高材料综合性能,特别是多种稀土复合添加,可使电极承载电流范围更宽,焊接性能优于钍钨电极。应用实践证明,单元稀土钨电极材料的焊接综合特性尚不能与钍钨电极相媲美,只能应用在小电流焊接等场合,目前不可能完全取代钍钨材料。