直流负极性
为钨极氩弧焊使用最广泛的电流型式,几乎所有的一般可焊接之金属和合金中都能产生良好的焊道;在以dcsp (direct current straight polarity 直流正接,等同于DCEN:direct current electore negative直流负极性)的焊接中,电极是负极,工作物金属是正极,因此电子流是由电极流向工作物金属。因为在所有直流电弧中70%的热量是在电弧的正极或阳极端部产生,对于给予尺寸的 电极棒,可承受正极性电流较多,而可承受的反极性电流较少,相同的,如果对于特定尺寸的电极棒,需要有最热的电弧时,dcsp是必须使用的电流型式。
正接直流电流可产生深的窄的焊道,且“渗透”优于其他两种电流所提供的,然而窄的焊道和较深的渗透使在此dcsp焊接薄金属物时引起困难;与dcrp 或ac不同的是:dcsp不能除移铝、镁或铍铜上的表面氧化物,但是铝若以dcsp焊接,需使用特殊化的焊接方式加上焊接前之机械的或化学的清洁
使用dcsp焊接比高频稳定化交流电弧焊接时需要教多的技术,主要是因为dcsp在引弧时没有高频导引放电,因此可在标准的机器上加上特别的装置而将高频电流附加于dcsp上。
直流正极性
在于dcrp(direct current reverse polarity 直流反接,等同于DCEP:direct current electore positive直流正极性)的焊接中,电极是连接电焊机正极端,且工作物金属接负极端。因此电子流从工作物流向电极棒;而在电极中产生高热量,在工作物中产生低热量;在相同的安培和电弧长度下,dcrp电弧的电压稍高dcsp电弧,因此dcrp电弧具有较多的总能量。
反接直流电是三种电流型式中最少使用的,因为其产生平坦的,宽的且渗透浅的焊道,以dcrp焊接,需要高的技术,因为以相同低的焊接电流值需使用大尺寸的电极棒。故而通常不使用,反极性直流电流具有“最冷的”有效电弧,但是能提供从工作物表面移氧化物之优越特性。
以dcrp焊接铝是特别的困难,因为熔池很容易被吸引至电极棒的尖端,而电极棒与铝接触时受污染变体,然而dcrp可有效的使用于接合薄的铝片(0.6mm),另一方面镁受到dcrp固有的电弧作用所排弃且因而没有污染问题,dcrp可使用于焊接厚至3mm的镁金属。
移除氧化物
有数种理论解释为何反极性直流电流能从某些母材金属表面移除氧化物的清洁作用但是,一般被接受的解释如下:
当电极性为正极时,氩气或氦气的离子是向母材金属表面进行,在环绕惰性气体雾圈上,带电的气体阳离子产生通过电弧的作用,气体离子具有相当的质量,且因而在向金属表急行的同时,获得大量的动能,当这些离子与金属表面碰撞时,如有喷纱的方式,撕掉氧化物的粒子而清洁之,此粒子在金属母材上产生热量比在电弧阳极端产生的热量较少,结果渗透的量较轻微,如果电极棒为负极且工作物为正极,则离子向电极棒行进而在工作物金属上无清洁作用且电子“轰炸”欲焊接金属,因此使工作物金属产生相当的热量和渗透。
例如不锈钢,碳钢和铜的金属,不会形成对钨极氩弧焊明显影响氧化层,
极性判断
在自动钨极氩弧焊中,会有以错误极性开始焊接操作的危险,这些因为重复操作使然,但是在手操作焊接中,只会偶然的被改变焊接机端头的连接而颠倒极性,最好在开始焊接之前,先试验极性,可避免电极性可能损坏(如果的反极性电流施加在小的电极棒上时,会发生损坏)。
使用手工焊条电弧焊接的手把线接于线路上,试验极性,以反极性,全位置手工焊条电弧焊焊条起弧(E6010级),如果极性是正的、则电弧具强烈且有力的嘶嘶声;真正反极性E6010的电弧不会具有力的劈啪声。
交流电流
可说为一系列的dcsp和dcrp之交互脉动,且每秒钟转换电流方向120次,交流电中,每一周期之间,电压由最大的正值变化至最大的负值,且每发生一次变化,电弧即熄减一次;在惰性 中焊接时,传统的电弧焊接变压器无法产生高至足以在电弧熄灭减后确实的在建立电弧的电压,相同的,除非使用具有足够的固有电压之变压器,否则必须附加高频电流于电弧上,以便在每半周期上能再建立焊接电弧。
交流电能提供良好的渗透,且使表面氧化物减少(或还原);ac的钨极氩弧焊产生的焊道比dcsp焊道较宽且较浅,但是比dcrp焊道较窄且较深,且其焊道加强部比dcsp或dcrp的焊道加强部较大,因此交流电较适合铝,镁和铍铜焊接。
整流预防
由于电压的正和负半周期跨过交流电弧期间产生不等的电流阻力,而引起不平衡的电流正弦波,产生整流作用上升现象,因其在ac弧中会产生直流电压部分,高至足以引起电弧飘动和不稳定。钨极氩弧焊使用较老式的变压器,较可能发生整流作用,因为没有新式的平衡波形组件.
因为电极棒和焊接金属放射不等量的电子而发生整流作用。其受到电极棒端和工作物端电弧的电流密度的影响(电流密度控制两者的温度),也受到电弧长度和使用的保护气体至某一程度的影响,整流作用会产生高至12V的直流电压部分在铝的焊接中,当直流部分高时,熔融铝的光亮熔池会变暗且产生氧化膜,其程度与直流部分之大小成正比。
可使用平衡波形变压器消除整流作用和其有害的效应,此组件加入一电容器串联于焊接电路中此电容器的电容量容许交流的焊接电流有效的流过,但阻止部分流通,这些组件通常被设计为具有100-150伏特范围的开路电压,需高频电流起弧,且很广泛的被使用于焊接铝合金和镁合金。
脉动电流焊接
脉动电流的钨极氩弧焊,是以高的电流上升与衰退速率和高的重复脉动速率操作,很广泛的使用精密配件的接合,具较缓慢的电流脉动速率之脉动电流是使用于机械化的管件焊接和其他的机械化焊接应用。
以发展出能容许自动精确控制脉动TIG的弧电压的电路,这些电路使用的弧电压是由高的脉动电流和在周期的残部期间锁住控制而产生,在修改形的脉动电流电焊机中,下列的函数也许是个别独立开始部分
脉动电流的钨极氩弧焊的优点如下:
1)焊道的“深度对宽度”之比例增加:使用短持续时间的高电流焊接脉和小的、纯的钍钨电极棒,在不锈钢焊接中,发生的电弧力会产生2:1的深度对宽度比例之焊道。
2)消除“坠陷”高电流,短持续时间脉即可“熔透”根部焊道或薄的工作物金属且熔池变大至足以下坠之前凝固。
3)热影响区减至最小:经由高脉的高度和持续时间,与低脉的高度和持续时间的适当比例,可将热影响区减至最小,有时设定低脉高度为零,同时保持高电流脉之间有限制的间隔。
4)在熔池中搅拌:电流的高脉产生的电弧和电磁力比定电流焊接产生的大很多,这些高的力量产生熔池的搅动而减少,接头底部可能发生 的针孔和不完全熔合,脉动在使用于低电流焊接时产生坚实僵硬的电弧,消除低电流的定电流电弧会发生的电弧散漫不稳定现象。